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A SIMPLIFIED METHOD FOR THE DETERMINATION AND ANALYSIS OF 
THE NEUTRAL-LATERAL-OSCILLATORY-STABILITY BOUNDARY 

By LEONARD STERNFIELD and ORDWAY B. GATES, Jr. 

SUMMARY 

A necessary condition for neutral oscillatory stability is that 
Routh’s discriminant R, form.ed -from the coe$kients qf the 
stability equation, is equal to zero. The expression for R is 
D(BC-AD) - B’E where A, B, C, D, and E are the coescients 
gf the lateral-stability equation. In a large number qf the 
cases considered in this study, it has been-found that the term 
B2E may be neglected. Routh’s discriminant is then -factorable 
into two simplified expressions, that is, BC-AD= R, and D; 
and either RI=0 or D=O, or both, ‘may constitute a condition 
of neutral stability. Test ficnctions h,aue been derived which, if 
satis$ed, indicate that the simplij%ed expressions may be used to 
approximate R=O. .“lf R,=O and D=O satisfy the necessary 
and su$icien.t conditions for a neutral-oscillatory-stability 
boundary, D=O represents the boundaty for the oscillation 
which has a period comparatiuely longer thalb the period of 
oscillation for which RI=0 is the boundary. 

In ge,neral, the results qf the computations obtained -from 
RI=0 and D=O show ‘very good agreement with the results 
ca.lculated by the exact expression for X=0. The nature of the 
modes of motion as a function of th.e directional-stability deriu- 
ative and the effective-dihedral derivative is discussed in detail. 

INTRODUCTION 

The results of recent investigations (references 1 and 2 
and unpublished results of lateral-stability analyses fol 
several experimental high-speed airplanes) have indicated 
that small variations in some of the airplane mass and 
aerodynamic parameters may cause a pronounced change in 
the oscillatory stability of the airplane. It has been difficult 
to explain the reasons for such pronounced changes because of 
the complexity of the expression for neutral oscillatory stabil- 
ity. This expression, based on the lateral-stability equations 
with three degrees of freedom, involves a large number of 
combinations of the mass and aerodynamic parameters. In 
order to predict the stability of the lateral oscillation, there- 
fore, it appears necessary to make a separate stability 
analysis for each airplane. 

The simplified expressions derived for the ncutral- 
oscillatory-stability boundary in the present theoretical inves- 
tigation simplify thecalculationsrequired toobtain the bound- 
ary in the analysis essential for each airplane. Because of the 
comparative simplicity of these expressions, an insight into 
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the important combinations of mass and aerodynamic 
parameters that affect the lateral oscillatory stability is also 
provided. Through further investigation and analysis of 
the effects of these major parameters, the necessity of malting 
separate calculations for each airplane might possibly be 
eliminated. Te6t functions are given which, if satisfied, 
inclicate that the simplified expressions may be used. 

The nature of the modes of motion as a function of CSs 
and CL,, the directional-st,ability derivative and efl’cctive- 
dihedral derivative, respect,ively, is shown to depend upon 
the location of the stability boundaries plott,rd as a function 
of Cns and C1,. 

The results of the calculations based on the simplificcl 
expressions are presented for comparison with the results 
obtained by the complete expression for the neutral- 
oscillatory-stability boundary. 

P 
V 
V 
P 

SYMBOLS AND COEFFICIENTS 

angle of bank, radians 
angle of azimuth, radians 
angle of sideslip, radians cu/V) 
sicleslip velocity along the Y-axis, feet per second 
airspeed, feet per second 
mass density of air, slugs per cubic foot 

dynamic pressure, pounds per square foot 
( > 

; pv2 

wing span, feet 
wing area, square feet 
weight of airplane, pounds 
mass of airplane, slugs (W/g) 
acceleration due to gravity, feet per second per second 
relative-density factor (m/pSb) 
inclination of principal longitudinal axis of airplane 

with respect to flight path, positive when principal 
axis is above flight path at the nose, degrees 
(see fig. 1) 

angle between reference axis and horizontal axis, 
positive when reference axis is above horizontal 
axis, degrees (see fig. 1) 

angle between reference axis and principal axis, 
positive when reference axis is above principal 
axis, degrees (see fig. 1) 
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angle of flight path to horizontal axis, positive in a 
climb, degrees (see fig. I) 

radius of gyration in roll about principal longitudinal 
axis, feet 

radius of gyration in yaw about principal vertical 
axis, feet 

nondimensional radius of gyration in roll about 
principal longitudinal axis (k=,/b) 

nondimensional radius of gyration m yaw about 
principal vertical axis (k,,Jb) 

nondimensional radius of gyration in roll about 
longitudina1 stability axis ( 1’KAy,2 cos”+KzO’sin’~) 

nondimensional radius of gyration in yaw about 
vertical stability axis ( ,‘Kz02 cos2 q+K-\oz sinz 7) 

nondimensional product-of-incll.tia paramctci 
((Kz,2--Kxo’) sin 11 cos 7) 

trim lift coeficicn t (?$y-?) 

rolling-moment cocfficicnt 
( 

Rolling moment 
----i@-- > 

( 
Yawinv momcnt 

yawing-moment cocfficicnt - m-b_ -- 
qSb > 

lateral-force coefficient 
( 

Lateral force _.--~~.-~ 
ClS > 

cficctive-dihedral derivative, rate of change of rolling- 
moment, cocfficicnt with angle of sideslip, per 
radian @C&P) 

tlircctionaI-sl ability dcrivativc, rate of change of 
yawing-moment corfficirnt with angle of sidrslip, 
per radian (W&B) 

lateral-force tlcrivativr, ratr of change of Iaferal- 
forcr corfficicnt with angle of sitlcslip, per radian 
WY/W) 

(lamping-in-yn\\. dcrivativr, rate of change of yawing- 
moment cocfficirnt with ya\~ing-ang:ulaI~-~~(~Io(~itg 

factor, per radian (W,!/a i!) 

raIc of cliangc of yawing-momrnt corflicien t with 
rolling-angular-velocity factor, prr radiall 

(wa g) 
damping-in-roll derivativr, rate of change of rolling- 

momrnt, cocfficirnt with rolling-ang:ulal,-~re1ocit.y 

fact or, per radian (b@Jd $b) 

rate of cliangc of rolling-moment coefficient wi-ith 
yang-ing-angular-velocity factor, per radian 

(XV $) 

rntc of change of latrral-force corffic~ic~nt with rolling- 

angular-vrlocity factor, per radian (awa $$) 

rate of change of lateral-force cocfficicnt. with yawing- 

angular-vc1ocit.y factor, per radian (aW ;b) 

time, srcontls 
nontIimcnsio~~:~l time p;*amcter hasrtl OH span (Vt/b) 

tIifTcrential operator J?- 
( > Ch 

Routh’s tliscriminant 

\ \ \ \ ‘\ Reference axis 
\ \ 

\ ‘\ 
Pri-rlpd ax;s I?-, \ 

\ ‘1. 

z’ 
FIGIRE I.-System of axes and mgular relationshilx in flight. Arrows indicate positiw 

dirrction of anglrs. 7=0--y--E. 

x complex root of stability equation 
A~-‘+Bx~+CX~+DX+E=O (X=[fiw) 

A’ complrx root of stability equation 
Ax’“+~ZBXIS+FX’z+~XI+~=O (A’ = (’ Irt id) 

I’ period of oscillation, seconds 
ir, /” time for amplitude of oscillation to change by facto1 

of 2 (positive value indicates a decrease to half- 
amplitude, negative value indicates an increase to 
double amplitude) 

A, R, C, D, E coefficients of lateral-st,ability equation 

EQUATIONS OF MOTION 

Tlit~ nontlinirnsional linearized rquations of motion, re- 
fcrrctl to the stability axes, usecl to calculate the spiral- 
stability and oscillatory-stability boundaries for any flight 
condition arc: 

Rolling 

2dKx2Dh26+KxzDb2#) =c,Bi-; CrpD,++; C,JM 

Yawing 

%(Kz2Db2~+KxzDh?& =C,&; CnJM+; G$W 

S&slipping 

2~*(n,P+r),*)=C,-gP-t f C,nD,~+C,~+~C,,D,l+(C~ tall-h4 

When &exQ is substituted for 4, &exsb for fi, poexs~~ for /3 in 
tlx equations written in determinant form, X must be a root 
of tlir stability equation 

Ax”+Bx3+C~2+D~+E=~ (1) 

wherr 

A=Qp~b3(K~2Kz2-Kxz2) 

B= -2~,‘(2K,?K,2C,a+Kx2C,r+1(,2C~p-2K~~2C~~8- 

KxzCr,-KxzCn,) 

I 
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Multiplying equation (1) by Pb and substituting h=cf 
results in the stability equation 

where 

g=B 
pb2 

B=D 

E=,,,E 

The damping and period of the lateral oscillation in 
seconds are given rcspcctivcly by the equations 

T =-!?.ssI*,b 112 r;’ v 

p-6.28 be 
WI v 

where 5’ and W’ are the real and imaginary parts of the 
complex root of stability equation (2). 

ANALYSIS 

The necessary and sufficient conditions for neutral oscilla- 
tory stability, as shown in reference 3, are that the coeffi- 
cients of the stability equation satisfy Routh’s discriminant 
set equal to zero 

R=BCD-AD?-B2E=0 (3) 

and that B and D have the same sign. The espression for 
R=O can be derived hy assuming that the stability equation 
has two roots A= fiw, where w is the angular frequency of 
the neutrally stable oscillation. This assumption is based 
on the fact that for the condition of neutl.al oscillatory 
stability the real part of the complex root must be zero. 

If X=iw is substituted in the stability equation, the following 
two equations are obtained: 

Aw4- Cwz+ E= 0 (4) 

-Bw3+Dw=0 (5) 

Solving equation (5) for w2 and then substituting the result 
D 

( > 
w*=B in equation (4) results in Routh’s discriminant 

BCD- ADZ- B2E=0 

It is seen from equation (5) that w= 
-\i 

0. Z is the angular fre- 

quency of the neutrally stable oscillation only when R and 
D are of the same sign since w must have a real value if the 
root X= f,iw is to represent an oscillation. If R ancl D are 
of opposite sign and X=0 is satisfied, the two roots of the 
stabi1it.y equation given by A= fiw are real, one positive 
and one negative. It is important to note that the A, C, 
and E cocfficicnts may be of opposite sign to the R and D 
cocflicicnts, and neutral oscillatory stability will still occur 
as long as Routh’s tliscriminant is equal to zero and thr D 
and R cocfficicnts arc’ of the same sign. 

In general, the R=O boundary in the C,,,,C,, plane has 
two branches. The two branches result from the fact that 
R=O is a quadratic equation in P1,+ and thus has two C,, 
roots for every value of CnP. Usually, the two branches can 
be approximated by simplified expressions for R=O. In 
certain cases, however, which arc discussecl in t)he section 
entitled “Test Functions,” cithcr one or none of the branches 
may bc approsimutcd. 

Nom, the condition R=O is a necessary but insufficient 
condition for nrutral oscillatory stability. The simplifiitd 
cxprcssions, therefore, which approximate R=O do not 
necessarily reprcscnt bomltlarirs of nrutral oscillatory 
stability. Other conditions, rlaboratctl on in the sclction 
“Validity of D=O and RI=0 as Neutral-Oscillatory-Stability 
Boundaries,” must bc satisfied before either expression 
represents a valid boundary. 

There are, thcreforc, two kinds of tests that must be made: 
First, tests to clctcrminc whet&r R=O may be approximated 
by simplified expressions; and, seconcl, tests to determine 
which of these expressions represents a bounclary of neutral 
oscillatory stability. The significance of the lateral-stability 
boundarics is indicated by a cliscussion of the modes of motion 
in the C,,,CL plane. 

DERIVATION OF SIMPLIFIED EXPRESSIONS 

Two of the most important stability derivatives affecting 
lateral oscillatory stability are the directional-stability 
derivative CnP a.nd the effective-dihedral derivative c’,,. 
The boundary for neutral oscillatory stability is usually 
plotted as a function of these two derivatives with Cns as 
the ordinate and C,, as t)he abscissa. The method used t,o 
obtain the neutral oscillatory stability bounclary is first to 
substitute the values of the mass and aerodynamic param- 
eters of a specific airplane in the coefficients of the stability 
equation while maintaining Cns and CZ, as variables and 
then to calculate the Cl, roots of equation (3) for several 
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values of CnO. For a given value of CnP, the expression for 
R=O is a quadratic equation in CZB that is of the form 

alC~a2+hC~s+c~=0 

For a very large number of cases, it has been found that the 
last term of Routh’s discriminant B2E, which contributes 
only to b1 and cl, produces a negligible change in the expres- 
sion 

alCz~2+bICz~+~l=0 

If, therefore, the term B2E is neglected, equation (3) for 
Routh’s discriminant reduces to 

R=D(BC-AD)=0 &'a> 

Thus BC-AD=0 and D=O are the approximate factors of 
the quadratic equation 

alC~B2+b~C~B+c~=0 

The expression BC-AD is henceforth called R,. 
In order to simplify the expressions for RI and D, the 

expect,ed range of values of mass and aerodynamic param- 
eters for high-speed aircraft were substituted in the coeffi- 
cients of the stability equation to determine which terms 
could be omitted without appreciably affecting the values of 
R, and D. The following simplified coefficients were obtained: 

A=8p,3(K,2K,"-K,z2) 

c= pb 
( 

4/*bKx2Cno- 4~,&.&& “&,+ 

CzpK,G~-; c&z, 
> 

D=ELb(~,~l,-2~~~Kz2)~z/4-~b(~zp-2c~~~)c~g 

E=$ CL( c7,p,- CZ,G@) 

The expressions for RI and D thus become 

RI= (A,Kxz-AA,&) C,,+[-K,,(2A,C,+ClpKXZ) -Kx2(Al- 

C,,Kz2Wn,-~~ g2 (A,-CC,,K,2) -c&c,,, 1 =O (6b) 

and 
(6~) 

where 
A,=K.~'C,,f2K,2K,2C,,SClpKZ2 

-I 
(64 

The simplified expressions RI=0 and D=O, as presented, 
are applicable only to conditions of level flight or to condi- 
tions of small angles of glide or climb. Simplified expressions 
for conditions of large angles of glide or climb can be derived 
by a procedure similar to the one presented. 

TEST FUNCTIONS 

The approximate discriminants RI=0 and D=O are based 
on the assumption that B2E can be neglected when Routh’s 
discriminant is set equal to zero. Thus, the simplified 
expressions for the neutral-oscillatory-stability boundary, 
R, and D, should not be used if including the terms B2E 
causes an appreciable change in the roots of R=O. In 
appendix A test functions are derived which indicate the 
incremental change in the roots of RI=0 and D=O clue to 
the terms B2E. If certain conditions placed upon these test 
functions are satisfied, then R, and D can be used to calculate 
the R=O boundary. 

If, at a given value of Cns, the root of RI=0 is denoted 
by C,@=r, the approximate deviation of this root from a 
root of R=O is given by 

(7) 

If Ar is small, then RI=0 is a close approximation t.o one 
branch of X=0. A suitable criterion for this approximation is 

or 
IArlS 0.01 

whichever is the larger. 
Similarly if a root of D=O is denoted by CZ,=cl, the 

approximate deviation of this root from a root of R=O is 
given by 

03) 

If Ad is small, then D=O is a close approximation to one 
branch of R=O. A suitable criterion for this approximation is 

01 
!dAj 5 0.01 

whichever is the larger. 
The expressions for r,, d,, e,, r, (1, and e for use in equations 

(7) and (8) are 

&=wh 

7’= (CzB)R1’0 

d= (C,),=, 

e= (+9)I?2EdJ 

&cre A,, AS, and A, are defined in equations (6d). 
The value of CnB to be used inthese test functions should be 

selected from the probable range of Cn8 of the airplane for 
which the lateral-stability analysis is to be made. Thus, the 
approximation of RI=0 and D=O to R=O is determinedin that 
region of the C,,,C1, plane pertinent to a particular analysis. 
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VALIDITY OF D=O AND R,=O AS NEUTRAL-OSCILLATORY-STABILITY 
BOUNDARIES 

As mentioned previously, for R=O to be a boundary for 
neutral oscillatory stability, the coefficients B and D must 
be of the same sign. The three predominant terms of B con- 
tain the factors --I?,+, -CYB, and -C+ respectively. For 
positive damping in roll, Clp is negative; and for positive 
weathercock stability (C& positive), CYB and C,, are negative. 
Thus, B is positive in the usual case where there is weather- 
cock stability and damping in roll. Therefore, D must gen- 
erally be positive in order that R=O be a neutral-stability 
boundary. If the exact boundary R= 0 has been calculated, 
it is merely necessary to plot D=O and R=O and note whether 
R=O is located on the side of D=O where D is positive. A 
primary purpose of the present report, however, is to obviate 
calculation of the exact boundary by the use of simplified 
boundaries together with test functions. A method to 
determine the sign of D from the results of the simplified 
expressions is therefore presented in the following paragraph. 

For a given value of Cnfl (selected from the probable range 
of C& of the airplane for which the lateral-stabilit,y analysis 
is to be made) let d be a value of C,, for which D=O and d’ 
be a slightly different value for which 

R=R,D-B=E=o 

The substitution of Ci,=d’ gives 

D(d’) =B2W’) 
R, (0 

The sign of D at the R=O boundary (C,,=d’) is therefore 
dctermincd by the. signs of E and R, at d’. But since d 
differs little from d’, the signs of E(d) arid K,(d) will bc the 
same as the signs of E(d’) and II, (d’), rc>spect,ively. Hence 
the sign of D at R=O is the same as the sign of EJR, at D=O 
(fig. 2); that is, 

E(d) 
DC”) =R,j 

If the signs of E and I?, arc the same, D is positive and repre- 
sents a neutral-oscillatory-stability boundary; if E and R1 
are of opposite sign, D is negative and then represents a 
boundary for which the roots of the stability equation arc 
equal and opposite in sign. 

.20 

.I6 R, = 0 E=O 
21 

, R=O D=O 
Ii I I I/ I 

.08 

'-.I6 -.I2 -.08 -.04 .04 .08 .I2 ./fi ?O 

FIGURE Z.-Validity of D=O as a neutral-oscillatory-stability boundary. 

The preceding analysis is applicable for the large majority 
of cases where E (d’) and Rl(d’) are of the same sign as E(d) 
and R,(d), respectively. For these cases, the D curve is 
widely separated from the E and R1 curves. If the D curve 
is close to either the E or R, curve, the signs of E and R1 
should be determined at Cz,=d’. However, a very good 
approximation to the~value of d’ can be obtained by adding 
to d the value of Ad calculated in the previous section entitled 
“Test Functions.” Hence, the sign of D is determined from 
the signs of E and R, at C,=d+Ad. 

If the value of Cl, at which RI=0 is substituted in D and 
the resultant sign is positive, RI=0 is a neutral-oscillatory- 
stability boundary. 

It is interesting to note that for some aircraft, the D=O 
curve, which approximates one branch of the R=O curve, is 
a neutral-oscillatory-stability boundary over one section of 
the curve and a boundary for equal and opposite real roots 
over the remaining section. This division of the D=O curve 
into two distinct parts is caused by a change in sign of the D 
coefficient at some point on the curve. If, as has been found 
in a large number of cases, R1 is positive for all values of Cza 
and C,, on the D=O curve, the sign of the D coefficient de- 
pcnds only on the sign of E at these points. As shown in 
figure 3, therefore, the point of intersection of the curves D=O 
and E=O is the point of separation of the D=O curve into 
two characteristically different sect.ions. For points on the 
hatched sicle of E=O, the E coefficient is negative and, there- 
fore, the clashed part of D=O is a boundary of equal and 
opposite real roots. Conversely, on the unhatched side of 
E’=O, the E coefficient is positive ancl the solid part of D=O 
approximates a boundary of neutral oscillatory stability. 

For small positive or negative values of Cna and negative 
damping in roll, it is possible for H to be ncgativc. A similar 
analysis is applicable to this cast where now D must be nega- 
tive to satisfy the necessary condition that R=O is a boundary 
of neutral oscillatory stability. 

In general, when the simplified expressions arc used to 
obtain a neutral-oscillatory-stability boundary, the procedure 
to be used is as follows: 

(1) For a given value of Cm@, selected from the probable 
range of C,, of the airplane for which the lateral-stability 
analysis is to be made, calculate T ancl d, the Cl8 roots of 
R, = 0 and D=O, respectively. 

16 

08 ' ' ' '*I ' ' ' " ' ' h' ' 

.04 *. I - 
2. 

I I 'I- t /' / / 
.' 

O- -.f6 -./2 -.08 -.04 0 .04 .08 .I: 
-G” 

FIGURE 3.-Effect of the position of the E=O boundary on the validity 
mate neutral-oscillatory-stability bourn 

of D=O as an approx 

by. 
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(2) Determine the value of Ar and Ad by substituting the 
results into the test functions. 

(3) If the criterions for Ar and Ad as set forth in appendix 
A are satisfied, consider R, =0 and D=O close approximations 
to the R=O boundary. 

(4) In order to determine the validity of X1=0 as a 
bounclary of neutral oscillatory stability, substitute the 
given value of C$ and Czs=r into the D coefficient. (If the 
resulting sign is positive, RI = 0 approximates a branch of the 
neutral-oscillatory-stability boundary.) 

(5) In order to determine the va1idit.y of D=O as a 
boundary of neutral oscillatory stability, substituk t.he given 

E value of P,,, and Cz,=d int,o r. (If the resulting sign 

is posit.ive, D=O approximates i branch of the neutral- 
oscillatory-stability boundary; if t,he resulting sign is ncga- 
tive, D=O approximates a boundary of equal and opposite 
real roots.) 

NATURE OF MODES OF MOTION IN THE C,&$ PLANE 

In this section, t,he changes in the roots of the lateral- 
stability equation, which occur upon crossing the various 
stability boundaries, arc discussed according to the principles 
of t,lie t~heory of equations as given in rcfcrcncrs 3 and 4. 
The solution of the lateral-stability equation gives four ro.ots 
which may be four real roots, two pairs of conjugate complex 
roots, or two real root,s and. one conjugate complex pair. A 
pair of complex roots indicates an oscillatory mode and a 
real root. indicates an aperiodic mode. If t,he airplane is 
disturbed from its trimmed condition by an arbitrary dis- 
t,urbance, the subsequent motion is compounded of these 
modes in different proportions. The method of calculating 
the different proportions of the modes is presented, for cx- 
ample, in references 5 and 6. Such calculations of the motion 
for uumcrous points throughout the C,,,C,, plane would be 

very laborious. It is more practical, thrrcforc, to investigate 
merely the t,ypes of modes that may he expected throughout~ 
the Cna,Cza plane as indicated by the stability boundaries. 

The calculation of the motion could then be limited to several 
points of interest. 

Consider a case where the neuiral-oscillatory-stability 
boundary RI=0 and the spiral-stability boundary E=O 
are located in the first quadrant of figure 4 (a). The RIYH. 
between the two boundaries is a region of complete stability. 
The roots of the stability equation for combinations of 
Cns and Cc, in this region, such as point -4 in figure 4 (a), 
are two negative real roots and one conjugate complex pair 
with the real part, negative. One of the real roots which is 
numerically small corresponcls to the spirally stable motion 
of the airplane. The other real root corresponds to the 
heavy damping of the pure rolling motion. The complex 
roots with the real part negative show that the so-called 
Dutch roll oscillation is stable. Passing through the E=O 
boundary from point A to point B causes the spiral mode 
to become unstable, and crossing through the RI=0 boundary 

from point A to point C causes the oscillatory mode to 
become unstable. The second branch of the R=O boundary 
plotted in the second quadrant as D=O is not a neutral- 
oscillatory-stability boundary but rather a boundary for 
equal and opposite roots as determined by the analysis 
presented in the section entitled “Validity of D=O and 
R, =0 as Neutral-Oscillatory-Stability Boundaries.” The 
roots of the stability equation for combinations of Cna and 
C!, on this boundary are two equal and opposite real roots 
and a pair of complex roots with the real part negative. 
The positive real root is the spirally unstable mode, and the 
negative real root is the clamping-in-roll mode. The 
oscillation continues to remain stable even though the D 
coefficient is negative. 

For the case where one oscillatory-stability boundary 
n=O appears in the first quadrant and another oscillat,ory 
stability boundary RI=0 is in the second quadrant. (fig. 4 (b)), 
the period of the neutrally stable oscillation is much 
greater on D=O than OD R1=O. This fact can be shown to 
br true by investigat,ing the angular frequency of the 
neutrally stable oscillation for points located on the RI=0 
and n=O boundaries. As shown previously, the angular 
frequency o is equal to ,/Dp; and, therefore, since the 
boundary n=O approximates one branch of R=O, the 
angular frequency for points on that branch is very small. 
For combinations of Cna and CL8 on R,=O, the angular 
frequency is much greater. In general, D=O is a neutral- 
oscillatory-stability boundary for a long-period oscillation. 

-.I2 -.08 -.04 0 .08 .I2 .I6 
-Czfi 

FIC~KE 4.-Satwe of root,s of stability equation in Cna,Cl:‘a plane. 
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The roots at point A of figure 4 (b) have the same character 
as the roots at point A of figure 4 (a), that is, two negative 
real roots and one pair of conjugate complex roots. At 
point B the roots of the lateral-stability equation are two 
pairs of conjugate complex roots. It is interesting to note 
that the boundary for two equal roots occurs between point A 
and point B and can be considered the boundary beyond 
which two pairs of complex roots exist. Reference 4 shows 
that for a quartic equation 

AX4+BX3+CkZ+DX+E=o 

the boundary for equal roots is obtained by setting the 
discriminant 

-4P3-27&” 
equal to zero, where 

P=BD-&L&.: 

and 

Bctwccn this boundary ant1 D=O, tllc pcariod of the stahlc 
oscillation which corresponds to tlic newly formed pair of 
c~omplcs roots is longer than the period of the oscillation 
which corresponds to the other pair of c*omplts roots. As 
(‘lB is incrcascd to point C on the unstable side of D=O, 
the newly formed long-pclriocl oscillation is the one that 
bccomcs unstable, wherras the short-period oscillation 
remains stable. At point D the roots consist of a spirally 
unstable mode, a stable mode due to the derivative Pip, sud 
a stable oscillation which bcctomc>s unstable in passing through 
RI=0 to point E. 

Figurr 4 (c) rcprcscuts the case mhcrc both RI=0 and 
D=O appclar in the first quadrant but ouly R, is a nctutral- 
oscillatory-stability boundary. The curve D=O is the 
boundary for two equal and opposite real roots. Point A 
once again has two rcal negative roots and a pair of complex 
roots with the real part ncgat,ivc. At point B, on the 
unstable siclc of R,=O, the real part of the complrs roots is 
positive and indicates an unstable oscillation, whereas the 
two real roots are still negative. The boundary for C=O is 
between RI=0 and D=O. Some investigators of lateral 
stability have thought that a radical change occurs in the 
roots upon crossing through this boundary. The calcula- 
tions inclicate, however, that the roots clo not vary appre- 
ciably upon passing through C=O. At D=O, however, 
there must exist two equal and opposite real roots; this 
condition is possible only if the complex roots divide into 
real roots since the other two real roots are negative in sign. 
The calculation of roots at point C indicate that the complex 
roots had divicled into two real positive roots, one of which 
was exactly equal in magnitude to one of the negative roots. 
Again, the boundary for two equal roots, located between 
C=O and point C, would determine the combinations of 

C,,@ and CZ, where the complex roots divide into two real 
roots. 

There have been several cases for which a neutral-oscilla- 
tory-stability boundary did not exist in the CZP,Cls plane. 
An analysis of these cases indicated that the boundary for 
equal rocts was in the oscillatorily stable region and had 
divided the stable oscillation into- two subsiding modes. 
The neutral-oscillatory-stability boundary, therefore, would 
not have any significance. 

RESULTS AND DISCUSSION 

The simplified expressions were used to calculate R, - 0 and 
D=O, and the results are compared with the results of the 
calculation of R=O based on the complete expression. Not 
only do RI=0 and D=O show good agreement with R=O 
(figs. 5 to 13) but the comparative simplicity of the RI and 
D expressions allows identification of the major parameters 
that affect the stability bounclarics. 

EFFECT OF Cn,-2C~Kza ON THE BRANCH OF H=U 
APPROXIMATED BY D=O 

Rcfcrcncc 2 shows that a stabili.t.ing shift in the R=O 
boundary is obtained when C,+, is incrcasccl in a positivr 
tlircction up to a certain value, but further increases in thr 
positive clirection cause a destabilizing shift in R=O. ‘I‘hc 
cflclct of varying C,!, on the R=O curve is presented in 
figure 5 for a model trstecl in the Langley free-flight tunnel. 
‘I‘hc figure illustrates very good agrccmcnt bctwccn R=O 
and the simplified expressions RI=0 and D=O. The 
expression for D=O is 

which indicates that for positive Cns when the numerator is 
negative in sign the D=O boundary is in the srcontl quad- 
rant for negative values of Cnl,-2CLKZP=A2 and in the first 
quadrant for positive valurs of A,. For the cases of negative 
A, presrntcd in figure 5, the D=O boundary would appear 
in the second quadrant. It can be shown, however, by the 
method clescribed in the section “Validity of D=O ancl RI=0 
as Neutral-Oscillatory-Stability Boundaries” that D=O in 
the second quadrant is not a neutral-oscillatory-stability 
boundary and hence is not plotted in figure 5. However, as 
C np is increased in a positive direction, where now A, is posi- 
tive, an increase in the positive value of A2 causes the D=O 
boundary to shift upward in the first quadrant in a destab- 
ilizing direction. 

From the results shown in figure 5, it is seen that for the 
cases of Cn, equal to 0.30 and 0.40 only the solid-line part of 
the R=O curve in the first quadrant (the branch which may 
be approximated by D=O) is a neutral-oscillatory-stability 
boundary. The short-dash-line part of R=O is a boundary 
of equal and opposite real roots. The reason for this division 
of the R=G curve into two parts is discussed in the section 
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FIGLIKE 5.-Effect of C,,p and -.I2 on the nrutral-oscillatory-stabilitg boundary. 

entitled “Validity of D=O and RI=0 as Neutral-Oscillatory- 
Stability Boundaries” and is illustrated in figure 3. 

EFFECT OF CnI-2CrKz3 ON THE BRANCH OF R=O 

APPROXIMATED BY R,=O 

The important effect of C?(,, on RI=0 occurs only in the 
coefficient of the C,, term, AIKAyz-A2A3, in which CnI, affects 
only the factor A,. The sign of A, is always posit,ivc and the 
sign of A, is negative for positive Cna. By definition, K,-, is 
positive if the principal axis is above t,he flight path at, the 
nose of the airplane as is the case for the curves presented in 
figure 5. ,,In general, for positive CTI,, the expression of RI=0 
which does not include any Cl, terms is positive and, except 
for one term, is independent of C,,,. If, thrrcforc, the 
coefficient of C,, is positive, RI=0 is in the first quadrant; 
whereas if the coefficient of C,, is negative, RI=0 is in the 
second quadrant. As C,p increases in a positive direction 
and A2 becomes more positive, the coefficient of Cl, becomes 
more negative and RI=0 in the second quadrant shifts 
upward in a destabilizing direction. If A, is negative but 
the absolute value of A, increases, as in going from C,j,=0.15 
to C,P=-O.10 in figure 5, the coefficient of Cl, becomes 
more positive and RI in the first quadrant also shifts upward 
in a destabilizing direction. Thus the results indicate that 
increasing the absolute value of A, has a destabilizing effect 
on the neutral-oscillatory-stability boundary. 

According to a previous discussion herein, variations in 
Cn, that maintain A, constant cause no shift in the D=O 
boundary. When, therefore, R=O is approximated by 
D=O, such changes in Cn, and Kz should have a negligible 
effect on the R=O boundary. In order to test this point, 

calculations were made for a free-flight, airplane model for 
Cm, varying from 0.30 to 0.63 while simultaneously varying 
Kz2 in order to maintain t.hc same positive value of A,. 
The results showed t,he expected insensitivity of the R=O 
boundary to these changes. 

It should bc remembered that D=O in the first quadrant. 
is the neutral-oscillatory-stabi1it.y bounclary for the long- 
period oscillation; and if instability were to occur, the pilot 
might not find this type of instability difficult to control. 

EFFECT OF Cn,, Cyb. AND Kx ON THE BRANCH OF R=O 
APPROXIMATED BY D=O 

The D expression indicates that the D=O boundary is 
independent of the derivatives C,+ and C, and the mass 
parameter Kx. Figures 6 and 7 show a comparison of the 
results obtained by the complete calculations with D=O 
for t,hc cases in which C,+ and CY,, rrspcctivcly, were arbi- 
trarily doubled in value. As noted in tht figures, Cnr and 
C,.@ have a ncgligiblc effect on the bounda.ry. The effect of 
KS on the branch of R=O which may bc approximated by 
D=O is shown in figure 8. Complctc calculations were 
made to obtain the R=O curves for the previously discussed 
free-flight airplane model. The value of A, used in these 
calculations was 0.17. For purposes of comparison, Kdy was 
arbitrarily increased by a factor of 2.5. Again the results 
show practically no effect of Kx on this branch of R=O, as 
is indicated by the simplified expression D=O. For the 
case discussed in figures 6 to 8, the branch of R=O approxi- 
mated by RI=0 is in the second quadrant and has little 
practical importance. Hence, the effect of these parameters 
on R, wa,s not cleterminecl for this pa,rticular case. 
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FIGURE 8.-Effect of Kx on the neutral-oscillatory-stability boundary. 

EFFECT OF PRODUCT OF INERTIA ON THE BRANCHES OF R=O 
APPROXIMATED BY R,=O AND E=O 

The product of inertia has been shown to have a very 
pronounced effect on the lateral stability of present-day 
airplanes designed for high-speed high-altitude flight (refer- 
ences 1 and 7). The importance of the product of inertia is 
illustrated in figure 9 (a), which presents the R=O boundaries 
of the hypothetical airplane discussed in reference 1 for two 
angles of inclination of the principal axis relative to the 
flight path, q=O” and ~=2’. Calculations were also made 
for these cases using R1=O; and the results presented in 
figure 9 (a) show the same marked stabilizing shift in the 
boundary, caused by the 2’ inclination of the principal axis 
above the flight path, as obtained by the complete calcula- 
tions. The value of A, for the RI=0 calculations was -0.18. 
The value of CnP was then increased so that A, was equal 
to 0.13 (fig. 9 (b)). In this case, D=O appears in the first 
quadrant and RI=0 is in the second quadrant. Although 
both D=O and R,=O are valid boundaries, the results are 
discussed only for the effect of product of inertia on D=O 
since only the c7,,,C,, combinations in the first quadrant 
arc usually of practical significance. Calculations for q=O” 
and 7=2' wcrc made using D=O ancl R=O. Although the 
product-of-inertia factor K. YZ does appear in the D expression 
(in the term -2C,K,,), an examination of D indicates that 
this term could have only a nrgligible effect on D=O when 

.I2 
c Y 
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.I6 
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(a) Negative AZ. 
(b) Positive AZ. 

FIGURE S.-Effect of Kxz on the neutral-oscillatory-stability boundary. 
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C,, is much greater than 2C.J&, as is usually the case. 
Figure 9 (b) shows that the results predicted from D=O 
agree very well with the results obtained from the complete 
calculations. 

EFFECT OF RADII OF GYRATION. ON THE BRANCH OF H=O 
APPROXIMATED BY R,=O 

Figures 10 to 12 are presented for the purpose of showing 
the close agreement between results obtained by using RI=0 
and results obtained from reference 1. The three figures 
illustrate the effect of the raclii of gyration in roll and yaw 
ho and ho, respectively, on the neutral-oscillatory-stability 
boundary. Figure 12 emphasizes the fact t.hat the simplified 
expression is sufficiently accurate to predict the effect of 
k,, on the oscillatory-stability boundary throughout the 
entire range of variation of k,. 

EFFECT OF WING LOADING AND ALTITUDE ON THE BRANCHES OF R=O 
APPROXIMATED BY R,=O AND D=O 

The efl’ects of wing loading and altitude on the neutral- 
oscillatory-stability boundaries were determined simul- 
taneously by considering variations in the relative density 

./6 
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c, 

0 

-.04 

706; 
.04 .08 ./2 ./6 .20 .24 .28 .32 
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0 .04 .08 .I2 20 .24 28 .32 
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.08 

0 .04 .08 ./2 ./CT .PO .24 .28 .32 
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factor p* because p,, varies directly with both wing loading 
and altitude. An examination of the expressions R, =0 
and D=O indicated that increasing CL?, causes a slight destab- 
ilizing shift in RI=0 but does not aflect D=O since pb cloes 
not appear in the expression for D=O. The trend shown by 
these results agrees with the results found in rcfcrcncc 1 
concerning the cffcct of p* on the neu trai-oscillatory-stability 
boundary. 

COMPARISON BETWEEN NEUTRAL-OSCILLATORY-STABILITY BOUNDARIES 
OBTAINED BY EXACT AND SIMPLIFIED EXPRESSIONS FOR A HIGH-SPEED 
EXPERIMENTAL AIRPLANE 

Some of the neutral-oscillatory-stability bounda.rics ob- 
tained from recent calculations for scvera.1 experimental 
high-speed airplanes have appeared much different from the 
conventional stability boundaries. Because of the com- 
plexity of the complete expression for R=O, it is diflicult to 
dctcrminc~ the reasons for such unusual looking curves and 
the signifi;cance of the boundaries. From the simplified 
expressions, however, ,a complrtc analysis of the boundaries 
can bc easily obtained. The I?=0 boundaries of an experi- 
mental airplane are shown in figure 13 (a). In addition to 
the X=0 boundaries, the D=O boundaries are also plotted 
in the figure. As mentioned at the outset of this report, 
X=0 is a neutral-oscillatory-stability boundary only if 
D is posit,ivc. The I?=0 boundaries on the hatched side of 
D=O arc not thercforc neutral-oscillatory-stabilitv bound- 
aries. The boundaries for the same experimental airplanr 
calculated from the simplified expressions are plotted in 
figure 13 (b). The R, =0 and D= 0 boundaries which arc 
not neutral-oscillatory-stability boundaries, as determined 
by the analysis presented in the section entitled “Validity of 
D= 0 and RI = 0 as Neutral-Oscillatory-Stability Bound- 
aries,” are shown as clash-line curves in the figure. In 
D=O, the coefficient of CL, becomes zero at C,,=O.O56 
and, therefore, t,hc D=O boundary approaches positive 
infinity in the second quadrant at (‘,,,=0.056. As C,,a 
increases above 0.056, n=O r&urns from negative infinity 
and appears in the first quadrant. Similarly, R, = 0 ap- 
proaches negative infinity when P,SB is approximately equal 
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(n) R=R,D--BgE=il .  
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t.0 0.25 since the coefficient of (r/0 in R1=O, il,K,-,-fl,il,, 
is zero at, this vnluc of C,,,. Above C’,,$ of 0.25, RI=0 
returns from positive infinity nnd nppmrs in the sccon(l 
qusdmnt. It is nc~ccssnry to not,c that in figure I3 (a) the 
neutral-oscillatory-stability boundary is one continuous 
curvr; whereas in figure 13 (b) this boundary is composed of 
two sections, one section of I<,=0 and the other section of 
D=O. The lat.ter fact provides the important information 
that the periocl of the oscillation which becomes unstable 
upon passing through the D=O boundary is comparatively 
longer than the period of the oscillation which becomes 
unstable upon passing through the I?, = 0 hou~~la~~y. 

CONCLUSIONS 

The following conclusions were reached from a theoretical 
investigation of a simplified method for obtaining and 
analyzing the neutral-lateral-oscillatory-stability boundary: 

1. A necessary condition for the lateral-neutral-oscillatory- 
stability boundary is that R=D(BC-AD)-BZE=O, where 
A, B, C, D, and E are the coefficients of the lateral-stability 
equation. The expression for R=Q is approximated by the 
expressions D=O and R1=BC-AD=O. Criterions are de- 
rived which, if satisfied, indicate that the approximat,e 
expressions satisfy the necessary and sufficient conditions 
for a neutral-oscillatory-stability boundary. 

2. If D=O and RI=0 approximate R=O, the curve D=O 
represents the neutral-oscillatory-stability boundary for the 
oscillation which has a period comparatively longer than the 
period of the oscillation for which RI = 0 is the boundary. 

3. In general, the results of the computations obtained 
from RI=0 and D=O show very good agreement with the 
results calculated by the exact expression for R=O. Specifi- 
cally, the results of the investigation inclicatcd: 

(a) An increase in the absolute due of the parameter A*, 
which is equal to f’,,,-2C,K,’ (where c’,, P is the yawing- 
moment c~ocfhcicnt due to rolling-angular-velocity factor, 
(i is the trim lift coefficient, and Kz is the radius of gyration 
in yaw), causes a dcstabilizin, v shift in the branches of 
R=O approximated by D=O and R1=O. 

(b) The branch of R=O approximated by D=O mainly 
depends upon the parameter A, and the damping-in-roll 
derivative (‘,P. The product-of-inertia term Kxz also appears 
in D, but it has a negligible effect on the branch of R=O 
apl~roximatcd by D=O. 

(c) An increase in the rclativc-density factor pb causes a 
destabilizing shift on the branch of R=O approsimatrd by 
X,=0 but does not affect the branch of R=O approsimatcd 
by D=O. 

4. The neutral-oscillatory-stability boundaries computed 
from the simplified cxprcssions show cscellent agrccmcnt 
with the corresponding boundaries prcsentrcl in NACA 
TN 1282. 

LANGLEY AERONAUTICAL LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLXY FIELD, VA., August 4, 1948. 



APPENDIX A 

DERIVATION OF TEST FUNCTIONS Ar AND Ad 

For a given value of Cns, selected from the probable range 
of CnB of the airplane for which the lateral-stability analysis 
is to be made, let 

Bs shown in figure 14 the exact roots of R=R,D-B2E=0 
occur at the intersection of the straight line B2E with the 
parabola RID. In the vicinity of the point CLp=r, at which 
R1=O, the curve RID is approximated well by a. straight, 
line tangent to the curve at C,=r, tha,t is, 

If there is a root of R=R,D-B2E=0 near R,=O (that is, 
if B2E intersects RID near the point T in fig. 14), then 

R= (-r2dl+r1d2) (Clo-r) -e,C5e-e2=0 

Thus, the approximat,e deviation of a. root of R=O from R, =0 
is given by 

(Al) 

If this deviation, Ar, is small, then RI=0 is a close approxi- 
mation t(o one branch of R=O. A suitable criterion for this 
approximation is 

01 

I I 
Ar _IO.Ol 

whichever is the larger. 
In the case of D=O, a similar anal\-sis results in the test 

function 

042) 

If Ad is small, D=O may then be considered a close approxi- 
mation to the other branch of R=O. A suitable criterion for 
this approximat,ion is 

I Ad 5 $ I Ii 
12 
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01’ 

I I 
Ad SO.01 

whichever is the larger. 

The expressions for rl, cl,, and el for USC in equations (Al) 
and (A2) are 

4=Cl*A2 

where 
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